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is well-known that the complexity of performing operations on a set depends heavily on the su'ucnure which
we are allowed to put into its presan. F ." ,ample. searching through a sequence of munbers can be
performed more efficiendy ifthe numbers appear in soed order. In this paper we take. m a cm-sumdy, die
class of problems involving a simple N-gon P and, malng the amumption dat in addition to the mii
description of die boundary of?, an arbitrary trianlpdadoo Is also ilable, we invedgau die computational
power gained km having dis additional intornasion. Among other uib, w we v a very smple optimd

algoridm for compui the am visible fom arbitary point.m P. We ao present several optimal

algorithms for computing he Inemd Aldam between two potat in P. Recall dio the inmtal dimm
between A and B is defined as the length of the shortest path Ibts P between A md A
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1. Inrductionyi

seaciog .va w&n& the mere avallabillity of an order amauag keys cumn down the complexity of searching
A fom linear to logarithmIc. In nutmical analysis. preconditioning a sparse matrix a standard procedtive in

order to facillitate the computation of ins inverse. In geeal dhe cruciall issue i to ballanc cowt and pin ofI. ~ ~preprocessing so as to optimize die overall peftome Few arm of computer science are free of this type of
tral-offt and, in particular, tis concern Is recurreit in computational geometry, operadoam reseach, and in
the study of dam sfucureordita bmes

The Su i - mentioned cainpumieua ginomety. provides a good example of a stracture Le., thes Vrmnf
&Wm easy wo construct efficiently, while owe of the ms powerfia toolls at our disposal for salving dons-
pon problem [SH77J Unrelated yet equally effctive results have shown diat onvex Spre len
themselves to &peieWlorildm than arirrl-h~dobjects [CHSO.CDSOKI1j. Consequently,
attractive approach to handle non-conve Spares a to decompose thein mo thei convex parts then apply to
dims the efficient metod known for convex objects CHSO"IS1GJ7SS7,VSOTOOj. We purmu tis
endaor in tis pape. and Inva di e exissinc of efficint algorithms for various problem awmning
that in addition to the usual boundary descriptio of a polygon, a arbiltratry triangulation Is allso available. It
is standard to defin a triangulation of a polygos as a conve decomposition which does not introduce aem
vertics1 £OJ7SJ Far our purposes, however, we can relax this definition and allow die vertices of die

triangulation to lie anywhere on die boundary of the polygon. The only provision to make is that the MWta
number of poin used in the triangulation a linea in the number of vertices, of dhe polygon. Nose that thisis
always ame with die standard, more restrictive definition. We also observe that is is am. given a convex

decoposiionof a polygon, to derive a trianguilation in linea time, It is then apparent that itis only ibr
amplimt that we choose to be supplied with a trianglation rther thn a am general cone

decompsitio of the polygon.

With t additional information in hand. we ain able to describe a very simple, yet optimal algorithm lbr
computing the arm visible frown any point inside a polygon. We also presen t several optimal algorithmns 1br

computing the interna disramc between two points inside a polyon. Recall that the inteWa distance is
deflned an the shortest distance a perso might travel frown one point to die other, while remaining within die

boundary of the polygon.

U.wle Al ftw vewims in ftw dsssmpsihi am us adma of t peIyrsm
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Next we introduce our notation. be proceeding with the description of the algorlihe. Let P be a
sbu~peZ polygo n wi vertices Yjin clockwise order. We assume the eofsnc ea triangulation Tof?.
defined a aset of Wooet'pn Wriaes wham union is exactly P. and whoe smnil we taken In the s

S. IllsM edges of the triasgiaton which wet not edges of P are called kintrs edgus. As mentienud
* above wemay choo so te uisto e anywhere nthe boundary of P.rovded thatthe OW

Aumber of vertice in the ilatiuon, duon oft IIeeed the number of vertices of P. up to, within a coma
&Mto. In this ame we may, for umkItnlcty. nne the vertices of P so that the list %,Y lives a clockwise

description of afthe vertices appeaing on the boundary of dhe trimangluon.

Observing dug a triangulation forum the embedding of a planar graph we choose a DCEL reprosentalon

of this graph a our baic working smwcur [MP7Ij. Recall dot a DCEL bs simply a hady da smuenun,
obtainable in linea time, from my stadard a41acene rPresenP- cn which in particular. allws on so
traverse the boundary of each Ace In cockwise order and Not the face encountered on the left-hnd side
during the traversal. Roughly, to each edge e o the graph is soigned a 6-fled node containing the ames of
die two endpoints in some specified order. a well n die two adjacent thes and dhe ames of each of the
edges Biret encountered in traversing these floces In clockwise order, starting at the endpoint a

None that several algoridihms =m availble in the lterature for computing an arbitray triangulation of an
N-gon. The best. ;ermnnb achieved so, Ar is O(Mog M) time 10J78.C)182 but Is yet unknown wo be
optimal or st.

2. Visibility problems
A problem which arnies fteqtendly to graphics cmeradi -te elimination of hidden line ft=m a tiw or
%Mre-dimen.ona scen [NS791. In two dimensions. the problem reduces to computing die set of points dim

are visible Ross a give point Ide a polygon P. Linear algorithms fbm this problem already exist
(CHOO.EASIJ, but they involve complicased stock manipulations which become unnocesry. once a
trianglation ns made available. The problem can be fbrmulated a foLoa

Given a shuipe polygo P and a point M is*d P. the lawu of points V such that the sgegnn M V
lies entirely in P it a simple polygon Y(M) Compute a clockwise desciption of the budwy' of
V(M)OWAJ4

We can regard die triangles of ra forming die nodes of a graph G. whose edges join die pairs of trales
with a common edge (Li. an interior edge) (fg.) As shown in Laem 1. the absence of interior faoces

ensures that the graph G isactually aas.

'A PlyM i U Md to bn MWOt ifrfi onlyanM cdsu WmunM
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[FIGURE 1

Flpre 1: 77m eviaguadeu Tad da dvw auh

Laoia1: Gisaum

hoe t lkaffices tohow dau fb r my Pu of Wansles inte ViUid *M C dieuAW e sa
,nweuu pebee t and .G. The ingle t, p.m P into 4 pas. One is theuiWne
iWel, the odi being poo aacent to die edges of I, (note dha some of deme polygons mmy
be reduced to a slonle ede) At amy n am y one of die tree polyos contains die tangle i.
Cog U this polygon. Jting u demoe its edp adjacn to t, and I be he triangle of T adjaet to u
Ad lying in U (l2) Since de Wglation of P alo provides a rangulad on of U. and hi
sbocitedgraph G is a ph o, wecanoee din if e is au epaah im from s
d is Als a unke pth in G ftm h rc can prove the leIma byl"duc on
the nnumberof v-cde. 0

[I MURE 21
lipf.?: AP',t Au G is aav

Let e be my inselor edge of die umbgub and let M be my point inside P. Lening tdenoe the triangle

of T which coains Al, we con define ((M) u the unique ures of G enasafg ftm e. which don am

contain t (l&3). •

(FICURB3D

We ae now in a pole to give a alodd r (' compiing the vildiy polygon V(M). To Ihclam our

cu. we introduce the fimcdos V1 dfie a blow le e* be ny emet lying entiry on the edge e.
Remove from Tall die riangles which do not belong to G(M.e) and call Q the resulting polygon. We define

VISl (... ate put of Q which is visM. kas M A l the window e. More peciely, VISE (Me)

b the met of poisnx In Qvuh dt e only ImsmecUtlo of Mu with he boundary of Q tkes place at ee (f4l

Let abbe tie venicae ot d t lrngle in Q ai4m I* ewith eulasd ;=a b*. We de1ue A (rap. A) as

de i of de poli he {g.o)} witk die dbi lie pin n thou a Ma*(rp. Mb*X It is now

Ulaigtbw t10o puladie budis.y lowD mu b

-.. ,. ., .' d......-..,...'. .. ..... ,... .-- ,. .. . . '... ... -"... . - . . . oS

r :.,., , ',."'V;,''. '.-:". " '.".","-... .".""-.. .,"",-.. . ... .•.-.. .". .". .- "-".. . ." -""-. . '.- "-"-"-"-". .-. 7.- .-.- -..- _
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Wee lie on the baunduy olP
d

. ire° n~ ~~ern mhe .,

DUtae the po-, "A
9 c lies between A ad A

V*-- VISIB (M.0)
V.-- V U VLSIB (MeA)

ehe
V.- VlIS (M,Af5)

rehn(P) -(fh.4)

[ FIGUE 41
Fipm 4: Comptig d ow VISI (Mo.0

To complete the computatio of V(M), it sunes to determine the ianlgle of T whem M is - which can
be done in ) dime- th apply the previous procedure with respect w its three Odps

V lLrrY (PM

Let e elbe the edge in clockwise order ofrthe
triangle 0f'Twhih contains M. Initily V(A) = N.
fer i = 1.Z3

beginl
V(M) - V(A) u VIsE (A.)
ad

See an illustration in W. Note that. as described, the procedure repors the boundary of V(M) in

clockwise order. except fbr the Wmles of V(M). Le. the sagi ens coflinear with M. which are omiued. A

single pan through the list V(M), however, will be sufficient to add the missing scments and we need not

elaborate. Using a 1XC. representation of the riangulation ensures that each recursive step can be executed

in constant tme, fon which we can conclude:

Theomem 2: Given a simple N-son P along with an arbitrary triangulation of P, it is possible to
compute the visibility polygon from any point At inside P in O(N) time.

The main advantage of this algorithm is that it avoids the complicated stack manipulations of [C!80 and

LFASIJ. The reader may convince himself/hersclf/itself that the algorithm could he rewritten without greaterI difficulty in order to deal directly with a more general convex decomposition (i.c.. without first converting it

.i7

,,. . . .. . . . . . .. . .- ..... .- ... . . .. .... . . . . . .--, , ,-:, ' -'', -: ', .',', ,-','.:':',:.:..: :...'' -''' .'': .:.; .. -. ..?.?'. .--i. /.i.-.: - ". . .- . .
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into a brlanu ). This may be an in gwi altenatve if one is willing to exploit the tfh dt serching
among die edgs of a onm polygon can be done in logarithmic tme. using a Fibonaci seare-bsed
strategy [ O,CDO0 We would to recommend t approach in practim however, unless the sin of the
problem wa particularly gigantc. Once Again, we leave substandaft tie digressions to the attention of
die reader.

[FIGURE 5
Figure : The vabUlty polygpn V(MA

3. Applications to Internal distance problems

3.1. The ear-racing problem
What is the shortest rctory of a racinf car on a given circuit. Mom precisely, die problem which we

address in this section can be expresead follows

Given a smple polyg P and Im arbllwy poit A and 5 in P. .fad the Aon path inide P
between A and 3 (M6u).

* (FIGURE 61
Figure 6 Thefitural pah bewee A ani IP(A.BA

Tis shMoe pah bcaed se b Awem d & dnoedlP(A. a undits ength Ik A i
called the intemr dimne between A and 8 (ftg.6). To have a visual repremaion of Ip(At one can
imagine a rubber band inside P tightly strtched between A and B. In ISM77 Sham suggems an O(N1

algoridhm for computing IP(A,). The method consiss essentially of computing all pairs of vertices visble
from each other, in 0(0) time. so as w fenn Uthe called v lly gVh of P. We ne add wehs to de

graph by associating to each edge the Eucldean distance between its endpoin Computing an inten d pah 1

is now equivalent to finding the shortest path between two veries ofa graph with N vetces, which can be
done in 0(0) time. Of cow e we umme in this cae dot both A aid 3 are vertices of P. We will next show
how the use of a triangulation permits us to compue the inurnal path in O(N) time, without even having to
restrict the points to be on the boundary of P. Note that since we know how to compute a triangulation of an

N-gon in O(Nlog N) time, this result constitutes a significant improvement;

For the time bing we will assume that both A andB are vertices of P. We will see later on how we an
easily dispense with this roquirement If A and B are vertices of the same triangle of T. it is clear that
IP(A.B)= AB. so we may assume that this is not the case. In the following, we will say that an interior edge of
T is .48-crossing if its endpoints uv ar such that A,u.Bv appear this order around the boundary of P. Lot

be the polygon resulting of th removal from Tof all the edges that are not All-crosing (fig.7). We it prove

-'..... o' -. -'-.,.,.. ... - .......--..... -..-.o......-."-...- .......... .... .

P,,,- U '.. ,,,...,. . - . . .. ...... ... . -.... ....-. -. ... .....- . •. . ....... •.
.***.% ,- --. .,... . w . ,.... ,.,, 1.- ., - .-..- •..r• ..- • .,...•...r...:. .- . . - . .*..• . .-.. .• ..,...*• -. -
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a few technical lemma.

[FIOURE 7

Figr 7: Th7 mr1fonnamion ofP ino "

Le 3: The internal path between A and B in P is identical to the internal path between A
-qand5 8 P

Proof. It suffies to show that IP(A,B) can only intersect AR-crossing edges. To see that.
suppose that it intersects an interior edge e which is not AB-crossing. Since e partitions P into two
polygons. one of tham does not contain B, therefore IP(A.B) crosses e at least twice (once in each
directon). If A (rep. ) sthe first (resp. second) intersection, going fm A to B. replacing the.
pan of IP(A.B) fronA to B by the segment A B wili shoen the leno of P(A. which leads
to a contradiction. 0

Leuinas 4: The internal path between A and B intusects every in o edp of PeCtl onc
and intersec no other ed tn T.

Poo. The proof of Lemma 3 shows that IP(A.B) cannot intsect any interior edge more than
once. On the other hand, we can easily prove by induction that since every intrior edp of P
partitions this polygon into two parts, neither of which contains both A and B, it must intrect
IP(A,B) at least once. Putting this result together with Lemma 3 completes the proof. 0

It is easy o comput e in O(N) me. To do so, consider every interior ede of T in mrn and if itis
AB-crosng remove it from T aion with tie dangling sub-polygonjust created. that does not contain A or

. Let L = falbjapb,) be the interior edem of K, a they appWear from A to B (fig/), Le. in the order in
which they intersect IP(A.B) (Lemma 4), Note that it is straightforward to obtain L in O(N) time, one e has

been computed. From now on. the term IP(xj), with xy, vertices of e, refers to the internal path between x

and y with respect t either P or 1P. This is legitimate since the two paths are identical, as a simple

generalization of Lemma 3 readily shows.

( FIGURE 81
Figm. 8: Computing IP(A.B iteratively.)

lemA 5: For any i: Isp. there exists a vertex Y of P" such that IP(A.ai)= IP(A.v)u U and
lP(A.b.)= IP(A. v) U W. where Uand Ware two convex. non-intersecting polygonal lines turning
their convexity against each other, and running from v to a, and b1. r-spectively (figi).

Proof. Let C1 and C, be two oriented curves originating at the same point. To carry the analoW
with internal paths we may further aoume that neither is self-intersecting: we say that Cl and C
have a proper crossing if. as we follow C! from its starting point, we encounter a point where C2
intersccts r,. and actually switches from one side to the other. f'il.9.1 (but not fig.9.2) shows an
example of a proper crossing.

I FIGURE 91
Fgm 9: The nokm ofproper crosuing

.4

.. . . . . . . . . . . .N.. . .. . . . . . . . . . . . .. .. .

".:'' ." : -.S..-. '"... '4" ...-.-. '...... .... ".. . . . .. ' . ' .'' ,.-' -.,' -, ,"".- -'... .-.-.. ".". - : - -
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We am prove dt fr any du points A.C In P. tw Wo pefu I,4J) and IA.C) mw
have any proper cUinL Suppose dot tey did: let a be the finrs point (snft at A) where. ll ,/.IRA) and IRA,.O cam to coincide, and lot b dene the am iniersecingl Point. Since IK(,UO
and lFAC take disnuct plt ftm a m. we may re-route c one to the um , oedy
mt have exacft te sae length. I[eraftg on this process wil evenually canse all proper
cruluigs to dsappear, which proves he above fact. We can now establish Lemma S by inductim
on L The inidal cut being triviaL we may directly mum that the lemma is rue for all Inie

ja~,wIog. Thus, osdrn the path IP(AA*, we observe. dthat sie" not ha1M aMy
propu crossings with cidmer IP(A.a1)or IflA*h

L It must pass trough their common point v.

2. Its ver ces between v and are vetices of Uad W.t ~ ~~From L It resuls that we may concentrate on the Path IPAJh Instead of 'RAA ). ine we
oboWIyhave I A - IRA) U I,.LA. Next we sengthen proposition V; pav

Sthe ert i 1)arecof Uo r W. but never of both athe suetmeL Indaid
suppos W4a that swrtng at . the vertice Of IM(,b V~) are-j widith hought lin$g mU
an d n W. It fellows that the angle (QM ,t:. s.r) isi lW deeeL& hde is
an o ius hirutm fr iP(vbb ). avoidins: .. ieads t a t onmdcom. Thus anr
am now two ban cas t comsder, depending on whether MP( ,bh+,) takes its vertices in Uor W.
In the fumer cam, V will be relocate Atuher ahead on U. wheret it will stay unchaugmin da
latter. The dtis ae wulhbward so we may conider de proofof the lomea acanpim. 0

[F1UIE 101
ft" t M&*iWIypw vi. t fIPiibA

We are now ready to proed with the algorim for coiuputiag IP(AJ) The method involves comptflpt
IPA~A) and lP(A*&~ fbr l=1...p. which we can do Iteratively by using the niasui of Lemma S. The
procedure being trivial for i L we Mmn to h geeral Msp directly. As alne memioed we have eih

Sim or b =b+, and wen nsume win ug % =&1+. * Mr.. 16 . (rNeuP %i ) be. h dm f U
(rasp. W)fm Vto a, (usp&*

The half'phne deliil d by akbt on the side where k+ 1 les is partitioned into. +9+ I ons 11esee
dellwnived by th lines pirsing toughl

With this order. the regins appear sorted along the sqpnent anbi ft m b to so t we can find ted
region which contain |+ by scsting each of them in torn to this order. until we are sucoassfo (fll). This
corresponds to unfidinl Wand possibly folding over U. If b,+ 1 lies in a pencil of de kind (w..^N Z)
we must simply remove wt+ ,,wp frmn Wand rmcmt to k+l and w, toi (flgjLll). If ,+1 lies in do
pencil I u,+). however we must set W to Ujb +  relmve (v,u.Uk j) from U and finally set v tos
(flg.ll.2). Anl the other cases are similar and call for no further cxplanation. Since none or the vertices

-. * *-,q , . . *S * *• *• ,.'., . .... • . , . . , .-.. . . . .. . ,, . . . . .. . . .. ..

........ ... . .. . *' *......................p • u .. d a. u
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removed i dis operations will ever be examined apin (Lemma 5). both IP(A.A) and IPKA.b,). hence
P(A.AJ will be computed in O(N) time.

[FIGURE III
Fiue11: Uduag U MdW.

We uneralize this resultby allowing both A and 8 to ie anywher inside P and not only on the baday.

Let !R (reap. S) be the triangle where A (reap. 5) les. It R=S. the problem is solved since IP(A.B)=AB.
Otherwise. we can compuse tie chain oftriangles P in exacdy the same way as described above.

Net let rivi be the insrr edge of t which WP(A,) emma.. We an replace R by the triaegle vA without
alen the path P(AJ4 Applying th e mm I S wil mike A and 5 beame vercs off, which
allm us D call on t procedue I to compu IP(A, In cochn in we can state our main
rMi:

*k Thusmk , Let P be a skiple N-go. aida mume that any lrangulaton of P is available. For
my po of pos 4.5 in P. it Is pan" v comput IF(AJ). the imrnal path between A and B

Sin O(N) dm. w hi s optiml in the w om .

3.2. The albiemal.l.Us preblem
The prbim is to pmpm ibe polyp. Pus the a bmh ofqle otis kInd:,

Whadet hehae patk b-ui-- Aw.dP
can be ansaed optimally. The mehod d c oiedl in the previous section grans an attractive balance
between execution mad preprocehs time when only a bw queries have to be handled at any given ime. It
is worns-cu optimal. but n opima p l In the -tI-cN1t sens ofte sum. sne al the vertices of P must always
be exmined ibr evay query. As a result he precompusadon of all possible insenal paths between vertices
entails a prdhbtive O(N cos. The oal which we set foth here Is so preprocess P so doat the computation of
IP(A.B Ibr any pair of vertices (A.B) requires only time propoonl to the size of die output, Le., the
number of veice in IP(AE^

To achieve this goal. we use die concept of visibility introduced arlier. Let V(A) be the visibility polygon

ofA. lfIP(A.B)-AB. Bis a vertex of V(A) otherwise V(A) hasa ry-de (i.e.. an edge vw such that v les on
Ar4 with die property dia rw separates A ftm B by intersecting IP(A.BA More precisely. vw is ft unique

edge of V(A) such iat either A.Y.B.wor A.w.lv occur in clockwise order (fi8.12). Since V(A) is star-shaped,
and vw is a ray-ode which is travesed by IP(A.B v must be tefim verex of IP(A.f) after A. Indeed. there
would be ash uuc it IP(A,B) cut vwat any ocher point. Consequently, we have the relation:

IP(A,R) a AvU IF(vB)

-,-,- .- , ,.-,,, .,,, . .- ,-.- , .,. • . .... . .- , . ,......-.......... .

, .C€ ., -,.- .:'..'/ .. :' ..--. .. ..., -. .... ..'.......'.: .- .:.... .....-:... .-. - .... .-.. . . . - ..'... ..
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This motivates the introducton of the function F(A.B)=. if IP(A.B)=AB. and F(A.B)=v otherwi.

Theorem 2 shows that if a triangulation of P is available, the visibility polygon V(A) of each vertex A of Pcn

be obtained in 0(N) time. The knowledge of V(A) permits us to set up the array

D(A) = { F(Av: i= 1,_ N
in O(N) time, with O(N) storage, from which we conclude:

Theorem 7: Let P be a simple polygon with N vertices. It is possible to preprocess P in O(N2)
time. using O(N2) space. so that for any pair of vertices A.B, the path IP(A,B) can be computed
optimally. Le. in time proportional to the size of the output.

, .~ PmP. Compute the N arrays D(vl),..D(v ), forming an NxN matrix {F(v. so that IP(A,B)
can be computed by retrieving FAB) in constant time, Jand computing
IP(F(A,).B) recursively. 0

I FIGURE 121

Flpure 12: 77e al -iemapathsprbm

3.3. The Internal-length problem

Imane that an island with only inland cmuni is to be serviced by some utility (water ank,

power stdon, fre house. police station, hospital. etc-). An interesting piece of infornation which may be

needed is an upper bound on the internal path length between any pair of poin.

Let A*.B be the two vertices of P which fonn the longest path IP(AB'). We call IIP(A'.Y)I thue,.!

length of P. It is easy to determine A* and Y by trying out all possible pairs of vertices and using the matrix F

of the previous section. given that the longest path can always be assumed to be found between two vertices of

the polygon. This leads to an O(N3) running time, which we can cut down t O(N2) by proceeding as follows:

Let D(A.B) = IIP(A.B). We will compute D(AB) iteratively by summing up partial distances obtained

from F In order to avoid duplicating computations. as soon as rXA.B) is available, we backtrack along the

path just followed in F to record the partial results. This ensures that. on average, one value D(AB) will be

computed at every other step. which leads to an O(N2) algoridthm.

i ' .... ...-................ ,,.......-.,....,.......,....,,..-.-.-..-..,.....,.....--.,-.....-.--...-
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![ INTDISr

Initially. each D(AB) is setto -1 lbr A.aB. and to 0 fbr A=&

for all i (lsisN)
for all j (1j:SN)

be&

X,-.-PI

while D(x.vi) =-

and
if Qha more than one elementdm

Let I = {x.-,x1 )

~for k = p-1,,1

Ls-L+I-kXc+lI

-iD(xk.Pi)#-L

add

.. X.) =Max (D(,. j) I all pairs ofvertices v,.Y)

Since we can compute a triangulation of Pin O(Nlog N) tie we may conclude:

Theorem 8 It is possible to determine the internal length of a simple N-gon as well as de
corresponding internal path in O(N2) time.

4. Conclusions

This paper has shown on the following examples how to use an arbitrary triangulation advantageously:

1. Computing the visibility polygon at any point inside an N-gon in O(N) time.

2. Computing the internal path between any pair of points in an N-on in O(N) time.

3. Allowing O(N2 ) preprocessing, being able to compute any internal path with optimal
performance.

4. Computing the intcrnal distance of an N-gon and the associatcd internal path in O(N2) time.

,-.. .... ". . . .. . . .. . . . .' .'. ' . . ..-. .. . .... '... .-... . ..-.. ..-. - -... ... ..- "...••

'_r ,' - ', ' '' ,'.. .' - -' ,"- ',' '.- -. . .- -. °. '- . -,. ". . ". ".' ', .'. .- . .- ,- " . , -,. . . - ." " .- . ". , .' ' ,

.., ,.' .' ; .'. '. .".. ',.. .'. '. '.. ..' .'.. . . -. .. .. ,• ..'.,. , -. -, . . ,. ".. .. .. .- .-. ,. -. -.. .. . .. ,*.. -, ..- . .'. .-.\ -
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Al of these algorihms achieve significant improvements over previously known methods, snce a
trianguladon of an N-gon can be computed in o(mog j) time. The Improvegm are t be measured eiher
in term of bener perfomance (Pblens 2,34) or in tern of added simplicity (Problm 1). We should ao

observe that it is yet unknown whether the triangulation algorithms available in the limture are omL

Since. on the other hand, half of the algoiwthns which we have desmbed M this paper ae linear after

manSuladon. overall speed-ups would autornically result from the discovery of fsr trianguladen

procedues.

This work was meant as a can-study and, ofcourle, the list of posible improvemnts brought about by de

use of a trimulation is not cled. Further nearc should attempt to enlarge de list iven her and caMy

the same approach with other prprocesing stun whether geomeulcal or nor

9%,

~~~~~~~~~~~~~~~~~~~~~~~~~.'--"....... ...-... .'...-..---.--.-.•-.--. -., .........-.......-........... "..-. -........ ..... o..
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